Improved Early Crop Type Identification By Joint Use of High Temporal Resolution SAR And Optical Image Time Series
نویسندگان
چکیده
High temporal and spatial resolution optical image time series have been proven efficient for crop type mapping at the end of the agricultural season. However, due to cloud cover and image availability, crop identification earlier in the season is difficult. The recent availability of high temporal and spatial resolution SAR image time series, opens the possibility of improving early crop type mapping. This paper studies the impact of such SAR image time series when used in complement of optical imagery. The pertinent SAR image features, the optimal working resolution, the effect of speckle filtering and the use of temporal gap-filling of the optical image time series are assessed. SAR image time series as those provided by the Sentinel-1 satellites allow significant improvements in terms of land cover classification, both in terms of accuracy at the end of the season and for early crop identification. Haralik textures (Entropy, Inertia), the polarization ratio and the local mean together with the VV imagery were found to be the most pertinent features. Working at at 10 m resolution and using speckle filtering yield better results than other configurations. Finally it was shown that the use of SAR imagery allows to use optical data without gap-filling yielding results which are equivalent to the use of gap-filling in the case of perfect cloud screening, and better results in the case of cloud screening errors.
منابع مشابه
Crop Mapping Using PROBA-V Time Series Data at the Yucheng and Hongxing Farm in China
PROBA-V is a new global vegetation monitoring satellite launched in the second quarter of 2013 that provides data with a 100 m to 1 km spatial resolution and a daily to 10-day temporal resolution in the visible and near infrared (VNIR) bands. A major mission of the PROBA-V satellite is global agriculture monitoring, in which the accuracy of crop mapping plays a key role. In countries such as Ch...
متن کاملIntegration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa
Crop mapping in West Africa is challenging, due to the unavailability of adequate satellite images (as a result of excessive cloud cover), small agricultural fields and a heterogeneous landscape. To address this challenge, we integrated high spatial resolution multi-temporal optical (RapidEye) and dual polarized (VV/VH) SAR (TerraSAR-X) data to map crops and crop groups in northwestern Benin us...
متن کاملComplementarity of Two Rice Mapping Approaches: Characterizing Strata Mapped by Hypertemporal MODIS and Rice Paddy Identification Using Multitemporal SAR
Different rice crop information can be derived from different remote sensing sources to provide information for decision making and policies related to agricultural production and food security. The objective of this study is to generate complementary and comprehensive rice crop information from hypertemporal optical and multitemporal high-resolution SAR imagery. We demonstrate the use of MODIS...
متن کاملChange Detection Approach to Sar and Optical Image Integration
In order to overcome the insufficiency of single remote sensing data source during information extraction, to make use of the complementary characteristics of SAR data and optical imagery, and to facilitate better monitoring and evaluation of resources and ecological environment, this paper develops the idea and presents the approach to land use/cover change detection by different temporal SAR ...
متن کاملGeo-Parcel Based Crop Identification by Integrating High Spatial-Temporal Resolution Imagery from Multi-Source Satellite Data
Geo-parcel based crop identification plays an important role in precision agriculture. It meets the needs of refined farmland management. This study presents an improved identification procedure for geo-parcel based crop identification by combining fine-resolution images and multi-source medium-resolution images. GF-2 images with fine spatial resolution of 0.8 m provided agricultural farming pl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016